Hopf Galois structures, regular subgroups of the holomorph, and skew braces: two (brief) stories

Elena Campedel1, Andrea Caranti2, Francesca Dalla Volta1, Ilaria Del Corso3

Omaha / Trento, 25 May 2020, 8:00 CDT / 15:00 CEST

1Università degli Studi di Milano Bicocca
2Università degli Studi di Trento
3Università degli Studi di Pisa
Italy
The holomorph, and its regular subgroups
The holomorph

\[\text{Hol}(G) = N_{S(G)}(\rho(G)) \]

The (permutational) holomorph of a group \(G \) is the normaliser, inside the group \(S(G) \) of permutations on the set \(G \), of the image \(\rho(G) \) of the right regular representation (as per Cayley’s Theorem)

\[\rho : \ G \rightarrow S(G), \quad g \mapsto (x \mapsto xg). \]

\(\rho(G) \) is a regular subgroup of \(\text{Hol}(G) \) (transitive & trivial stabilisers), but there may be well (plenty of) other regular subgroups, most notably the image of the left regular representation \(\lambda : g \mapsto (x \mapsto gx) \).

The stabiliser of 1 in \(\text{Hol}(G) \) is \(\text{Aut}(G) \), so that

\[\text{Hol}(G) = \text{Aut}(G)\rho(G) \cong \text{Aut}(G) \rtimes G, \]

the last group being the (abstract) holomorph.
Regular subgroups and Hopf-Galois structures

- Regular subgroups of the holomorph parametrise Hopf-Galois structures:
 - Cornelius Greither and Bodo Pareigis
 Hopf Galois theory for separable field extensions
 J. Algebra 106 (1987), 239–258

 - N. P. Byott
 Uniqueness of Hopf Galois structure for separable field extensions
If N is a regular subgroup of $\text{Hol}(G) = \text{Aut}(G) \vartriangleleft \mathbb{S}(G)$, then

\[
N \to G \\
\begin{array}{c}
n \\ \mapsto \end{array} 1^n
\]

is a bijection. Let $\nu : G \to N$ be its inverse, that is, the map that takes $g \in G$ to the unique $\nu(g) \in N$ such that

\[1^{\nu(g)} = g.\]

Then

\[
\text{Aut}(G) \vartriangleleft \mathbb{S}(G) \ni \nu(g) = \gamma(g)\rho(g),
\]

for a suitable function $\gamma : G \to \text{Aut}(G)$.

We study the regular subgroups N of $\text{Hol}(G)$ via this function γ, which is characterised by the functional equation

\[
\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y), \quad \text{for } x, y \in G.
\]
Let $G = (G, \cdot)$ be a group. Define a correspondence between

- maps $\gamma : G \to G^G$, (G^G is the set of maps from G to G), and
- binary operations \circ on G,

via $x \circ y = x^{\gamma(y)} \cdot y$, and $x^{\gamma(y)} = (x \circ y) \cdot y^{-1}$.

Certain properties of \circ correspond to properties of γ.

<table>
<thead>
<tr>
<th>\circ is associative</th>
<th>$\gamma(x^{\gamma(y)} \cdot y) = \gamma(x)\gamma(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\circ admits inverses</td>
<td>$\gamma(g)$ is bijective</td>
</tr>
<tr>
<td>$(x \cdot y) \circ g = (x \circ g) \cdot g^{-1} \cdot (y \circ g)$</td>
<td>$\gamma(g) \in \text{End}(G)$</td>
</tr>
</tbody>
</table>

Therefore it is equivalent to deal with

- (right) skew braces (G, \cdot, \circ), and
- maps $\gamma : G \to \text{Aut}(G)$ such that $\gamma(x^{\gamma(y)} \cdot y) = \gamma(x)\gamma(y)$.
- regular subgroups $N \leq \text{Hol}(G)$.

Note $\nu(g) = \gamma(g)\rho(g)$ yields an isomorphism $\nu : (G, \circ) \to N$. 4/18
Groups having the same holomorphs
Kohl has revived the study of the group

\[T(G) = NS(G)(\text{Hol}(G))/\text{Hol}(G) \]

\[= NS(G)(NS(G)(\rho(G)))/NS(G)(\rho(G)), \]

which parametrizes the regular subgroups \(N \) of \(\text{Hol}(G) \) which

- are isomorphic to \(G \), and
- have the same holomorph as \(G \), that is,

\[\text{Aut}(N) \rtimes N \cong NS(G)(N) = NS(G)(\rho(G)) = \text{Hol}(G). \]

\(NS(G)(NS(G)(\rho(G))) \) is called the multiple holomorph of \(G \).
Francesca Dalla Volta and A.C. have redone this using commutative, radical rings.

A.C. and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group

J. Algebra **481** (2017), 327–347

The case of abelian groups leads to the following question:

Study the rings \((A, +, \cdot)\) *such that all automorphisms of the additive group* \((A, +)\) *are also automorphisms of the ring* \((A, +, \cdot)\).
Groups that have the same holomorph as a finite perfect group

The case of finite perfect groups Q (i.e. $Q' = Q \neq \{1\}$) leads to the following question about quasi-simple groups Q (i.e. $Q' = Q$, and $Q/Z(Q)$ non-abelian simple):

What are the finite, quasi-simple groups Q for which $Aut(Q)$ does not induce the inversion map on $Z(Q)$?

These groups have been classified

Russell Blyth and Francesco Fumagalli

On the holomorph of finite semisimple groups

arXiv 1912.0729, December 2019
Kohl noted that $T(G) = N_{S(G)}(\text{Hol}(G))/\text{Hol}(G)$ is often a 2-group. For instance, this holds if G is in the previously mentioned classes. But the structure of $T(G)$ can be more complicated:

A.C.

Multiple Holomorphs of Finite p-Groups of Class Two

If G is a finite p-group of class 2, with p an odd prime, $T(G)$ always contains a cyclic group of order $p - 1$. And there are examples where $T(G)$ contains large elementary abelian p-subgroups.

This has been extended to finite p-groups of class $< p$:

Cindy Tsang

On the multiple holomorph of groups of squarefree or odd prime power order

Classifications
There are classifications of skew braces of low orders, like p, p^2, p^3, pq, where p and q are distinct primes.

- N. P. Byott
 Uniqueness of Hopf Galois structure for separable field extensions

- N. P. Byott
 Hopf-Galois structures on Galois field extensions of degree pq

- Kayvan Nejabati Zenouz
 Skew braces and Hopf-Galois structures of Heisenberg type
Elena Campedel, Ilaria Del Corso and A.C. have begun a classification for the case p^2q, where p, q are distinct primes. We use the skew brace operation \circ, and the gamma functions.

Elena Campedel, A.C., Ilaria del Corso

Hopf-Galois structures on extensions of degree p^2q and skew braces of order p^2q: the cyclic Sylow p-subgroup case

J. Algebra 556 (2020) 1165–1210

Note also

Emiliano Acri, Marco Bonatto

Skew braces of size p^2q

Proposition

Let $G = C_q \rtimes_p C_{p^2}$, with $p \mid q - 1$. (Centre has order p.)

Then in $\text{Hol}(G)$ there are:

1. $2pq$ abelian regular subgroups, which split into $2p$ conjugacy classes of length q;

2. $2qp(p - 2) + 2p$ regular subgroups isomorphic to G, which split into $2p(p - 2)$ conjugacy classes of length q, and $2p$ conjugacy classes of length 1;

3. $2q p^2 (p - 1)$ further regular subgroups isomorphic to $G = C_q \rtimes_1 C_{p^2}$ (centre is trivial), if $p^2 \mid q - 1$, which split into $2p(p - 1)$ conjugacy classes of length qp.
Methods
If G is a non-abelian group, then $\text{inv} : x \mapsto x^{-1}$ is not an automorphism of G, so that

$$\text{inv} \notin \text{Hol}(G) = N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G).$$

But...

$$\text{inv} \in N_{S(G)}(N_{S(G)}(\rho(G))) = N_{S(G)}(\text{Hol}(G)) = N_{S(G)}(\text{Aut}(G)\rho(G)),$$

as

$$[\text{inv}, \text{Aut}(G)] = 1, \text{ and } \rho(G)^{\text{inv}} = \lambda(G) \leq \text{Hol}(G).$$
\[\rho(G)^{\text{inv}} = \lambda(G). \]

Note that \(\rho(G) \) corresponds to the gamma function \(\gamma(x) \equiv 1 \), while \(\lambda(G) \) corresponds to the gamma function \(\gamma(x) = \iota(x^{-1}) \) (conjugacy by \(x^{-1} \)):

\[y^{\iota(x^{-1})}\rho(x) = xyx^{-1}x = xy = y^{\lambda(x)}. \]

In general, if \(N \leq \text{Hol}(G) \) is a regular subgroup corresponding to the gamma function \(\gamma \), then \(N^{\text{inv}} \) is another regular subgroup of \(\text{Hol}(G) \), which corresponds to the gamma function

\[\overline{\gamma}(x) = \gamma(x^{-1})\iota(x^{-1}). \]

This explains why the number of regular subgroups was even.
Applications
Larger kernels of γ appear to make life easier: we have methods that combined with duality allow us to switch to larger kernels. This allows us also to extend a result of Kohl.

T. Kohl

Hopf-Galois structures arising from groups with unique subgroup of order p

Algebra Number Theory **10** (2016), 37–59

Theorem (Kohl)

Let $G = MP$, with $P \triangleleft G$ of order a prime p, such that

\[p \nmid |M|, \quad \text{and} \quad p \nmid |\text{Aut}(M)|. \]

Let N be a regular subgroup of $\text{Hol}(G)$. Then there is a Sylow p-subgroup of N which is normalised by $\rho(G)$.
Sketch of proof

Theorem (Kohl)

\[G = MP, \ |P| = p \text{ prime}, \ P \trianglelefteq G, \ p \nmid |M| \cdot |\text{Aut}(M)|. \]

\(N \) a regular subgroup of \(\text{Hol}(G) \), so \(N \) normalises \(\rho(G) \).

Then the Sylow \(p \)-subgroup \(\nu(P) \) of \(N \) is normalised by \(\rho(G) \).

Recall the isomorphism \(\nu : (G, \circ) \to N, \nu(g) = \gamma(g)\rho(g) \).

If \([P, M] = 1 \), then \(\nu(P) = \rho(P) \trianglelefteq \rho(G) \).

If \([P, M] \neq 1 \), then \(p \nmid |\text{Aut}(M)| \) implies that the automorphisms of \(G \) of order \(p \) are inner, induced by conjugation by elements of \(P \).

Thus for \(P = \langle a \rangle \) one has \(\gamma(a) = \nu(a^{-\sigma}) \) for some \(\sigma \in \text{End}(P) \). It turns out that \(\sigma \) is an idempotent, so that we have the duality:
- either \(\sigma = 1 \), so that \(\nu(P) = \lambda(P) \) is centralized by \(\rho(G) \);
- or \(\sigma = 0 \), so that \(\nu(P) = \rho(P) \trianglelefteq \rho(G) \).
One More Method
Lemma

Let G be a group, and $\gamma : G \rightarrow \text{Aut}(G)$ a function.

Then any two of the following conditions imply the third one.

1. γ satisfies $\gamma(x \gamma(y) \cdot y) = \gamma(x)\gamma(y)$, for $x, y \in G$.
2. $\gamma : G \rightarrow \text{Aut}(G)$ is a morphism of groups.
3. $\gamma([G, \gamma(G)]) = \{1\}$.

Valeriy G. Bardakov, Mikhail V. Neshchadim and Manoj K. Yadav

On λ-homomorphic skew braces

arXiv 2004.05555, April 2020
Also related to work of Kohl
A bi-skew brace is a skew brace \((G, \cdot, \circ)\) such that \((G, \circ, \cdot)\) is also a skew brace.

L. N. Childs

Bi-skew braces and Hopf Galois structures.

A. Caranti

Bi-Skew Braces and Regular Subgroups of the Holomorph

A bi-skew brace is a skew brace \((G, \cdot, \circ)\) such that \((G, \circ, \cdot)\) is also a skew brace.

Rather naturally, bi-skew braces correspond to

1. the regular subgroups \(N\) of \(S(G)\) such that

\[
N \leq \text{Hol}(G) = N_{S(G)}(\rho(G)), \quad \text{and} \quad \rho(G) \leq N_{S(G)}(N).
\]

2. the functions \(\gamma : G \rightarrow \text{Aut}(G)\) that satisfy

\[
\begin{align*}
\gamma(x\gamma(y)y) &= \gamma(x)\gamma(y) \\
\gamma(x\gamma(y)) &= \gamma(x)\gamma(y)
\end{align*}
\quad \text{or} \quad
\begin{align*}
\gamma(xy) &= \gamma(y)\gamma(x) \\
\gamma(x\gamma(y)) &= \gamma(x)\gamma(y).
\end{align*}
\]

It follows that all the examples of Kohl, A.C and Dalla Volta, and Tsang yield bi-skew braces, as they satisfy \(\gamma(x^{\beta}) = \gamma(x)^{\beta}\) for \(\beta \in \text{Aut}(G)\).
Thanks!

That’s All, Thanks!