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. Introduction

Let p be a prime number and let n > 1. Let K be a finite
extension of the p-adic rationals Q, containing (,, a primitive p"th
root of unity with (§ = (,_1. Let v(a) be the valuation of a in K
normalized so that v(7w) = 1 where 7 is a parameter of K.

Let R denote the ring of integers of K and let v(p) = e denote the
ramification index of p in R. Put ¢’ =e/(p —1).

Let Cpn denote the cyclic group of order p” generated by g, with
character group C,n, generated by . Let

(, ) KCn x KCpn — K

denote the duality pairing defined by (v, g)n = (». When there is
no chance of confusion we will use the simpler notation ( , ).



The group algebra KCp,n is a K-Hopf algebra where the
comultiplication A : KCpn — KCpn @ KCpn, counit € : KCpn — K,
and coinverse o : KCpn — KCpn maps are defined by g — g ® g,
g1, and g — g7, respectively.

An R-order in KCyn is a subring H of KCpn which is a finitely
generated R-module and which satisfies H @gr K = KCpn. The
R-order H is an R-Hopf order in KCy» if A(H) C H® H.

The invariance of H under A implies that ¢(H) C R and
o(H) C H, hence A, ¢, and o give H the structure of a Hopf

algebra over R. The integral group ring RCpn is an easy example of
an R-Hopf order in KCpn.



The classification of Hopf orders in KC,n is complete for the cases
n=1,2. This is due to the work of various authors: J. Tate and F.
Oort [TO70], R. Larson [La76], C. Greither [Gr92], N. Byott
[By93], U. [Un94], and U. and L. Childs [UCO06].

The classification for n > 2 is an open problem however.

In the case n = 3, large classes of Hopf orders have been
constructed: U. and L. Childs have identified collections of
triangular, cohomological, ILD, duality and formal group Hopf
orders, see [Un96], [CU03], and [UCO6].

Nevertheless, a complete classification remains elusive. We shall
consider the case n = 3 in this paper, recalling results found in
[Un08]. We begin with a review of the case n = 2.



2. The n = 2 case

Let g denote the image of g under the mapping KC,. — KCp,
gP — 1; let 7 denote the image of « under the mapping

KCp — KCp, 7P — 1. For an integer m, 0 < m < e, set

m =e —m.

Let /,j > 0 be integers with € > /,j. Then

H(i) = R [gpjl} and H(j) = R [g_.l]

™ g

are Hopf orders in KC, [Ch0O, §31].

It is well-known that all Hopf orders in KC, are of the form given
above (see [Ch00, 31.13].)



The linear duals of these Hopf orders are Hopf orders in
K Cp = KC, of the form

H(i)* = H(i") = R Pﬂ_l} and H(j)* = H(j)) = R [7 _ 1} .

7TJ

We extend the rank p Hopf order H(i) to obtain a Hopf order in
KC,
p

This has always come down to selecting the “correct” element
gb

E KC,2 which maps to i
surJectlon KCp — KC,.

under the canonical
7r



Form=0,...,p—1, let
151
lm = 7ZC1—ma,ypa’
pa:O

122
€m = — ch—magpa’
p a=0

denote the minimal idempotents for K(y?) =2 KC,, and
K(gP) = KC,, respectively.

Let s =1, and s,, m=1,...,p—1, be units of R and set

p—1
T = Z Smtm, T € K{yP);

m=0



Let xo =1, and xp,, m=1,...,p— 1, be indeterminates and set
p—1
x = meem, x € K(gP).

m=0

We seek values for x,,, m > 0, so that

(P =1y - 1), gx = 1), =0, (1)

forg,r=0,....,p—1, r>0.



Proposition 2.1. The solution to (1) is xm = ¢, sy ™ for
m=0,...,p—1. Thus

(7 =1)%(y7—1)", gb— 1), =0, (2)

forq,r=0,...,p—1, r >0, where
p—1
b= chmsfmem € K(gP).
m=0

Proof. Direct calculation. O

Put § = C2—151—1_ Then b is the familiar “Greither” quantity az,
which we shall write as G(g”, 1), where

G(X7y) =

denotes the Gauss sum.



Now let j > 0 be an integer with i > j/p. Let

8G(g” %) — 1]

el

Al J:55) = H) |
denote the R-module which is the H(i)-span of the set

{1 $5l6%5) 1 (807,51

e e

. <8W>P—l}
, > |




Proposition 2.2. Assume that v((1sf — 1) > pi’ +j. Then
A(i,j,51) is a subcoalgebra of KCp..

Proof. Since A(/,j,31) C KC, the counit map € of KCp restricts
to give counit map € : A(/i,/,51) — R.

From i > j/p, we see that v((15f — 1) > pi’ + j implies
v(Cas1 — 1) > i' + j/p. Thus by [Ch00, (31.8)],

G(gP,5) € 1+ /PH(i),

and so, G(gP,51) is a unit in H(i). The result then follows from
[Ch0O, (31.2), (31.10))]. O



Next, let yg =1, and y,,,, m=1,...,p — 1, be indeterminates and
set

p—1
y = mebm, x € K(nP).

m=0

We seek values for y,,,, m > 0, so that

(v —1,(g” —1)%(gG(g",51) = 1)"), =0, (3)

forg,r=0,....,p—1, r>0.

By Proposition 2.1, the solution to (3) is y, = sy, for
m=0,...,p—1. Thus y = G(+P, s1).



Now assume that / > pj, and & > i+ . Let

G (7P, 51)—1}

7-[-1

A1) = HO) |

denote the R-module which is the H(j’)-span of the set

{1 VG(P,51) — 1 (vG(v”,&) - 1>2

i’ i’
7'["

ﬂ-l
7G(yP, 1) —1\P 7
(T .



Proposition 2.3. Assume that i > pj, € > i+ j, and
v(Cisf —1) > pi' 4. Then A(j', ', s1) is a subcoalgebra of KC.

Proof. Since A(J',’,s1) C Képz, the counit map ¢ of Képz
restricts to give counit map € : A(j',i’,s1) — R.

Since € > i+, v(Cisf —1) > pi’ +j implies v(Cisf — 1) > pj+ 1.
Since i > pj, v(C1sY — 1) > pj+ i’ yields v(sf — 1) > pj+i". Thus
G(7yP,s1) is a unit in H(j'). Note that i > pj implies j/ > i'/p.

The result then follows from [Ch00, (31.2), (31.10)]. O



To summarize: for i > pj, € > i+j, v(¢isf — 1) > pi' + j, we
have that

P—1 P &)—1

a7 e
is a subcoalgebra of KC,2, and

P =1 vG(yP,s1) — 1]

7'['j/ ) 7-[-1/

A(j',i’,sl):R[

is a subcoalgebra of Képz.



Proposition 2.4. Suppose that i > pj, € > i+ j, and
v(Gis? — 1) > pi’ +j. Then

P_1 gG(gP,5)—1
A(i,j,§1)=R[g -1 el ) ]
™ e

is an R-Hopf order in KCp> with linear dual

P —1 vG(yP,s1) — 1]

7.(_J'l ) 7_[_,l

A(j’,i’,sl):R{

in Kfpz.



Proof. We show that A(j’,/’, s1) is a Hopf order in K(.A'pz. First
note that A(i, j,51)* is an algebra. From A(i,j,5)* N KC, = H(j")
and (3), we have A(j’, ", s1) C A(i,j, %1)*. Moreover, %
satisfies a monic polynomial of degree p with coefficients in H(j’).
Thus A(J’, i, s1) is an algebra as well as a coalgebra.

The coinverse map of A(J’, /', s1) can now be defined as the
composite o of the iterated comultiplication and multiplication

maps
p?-1

AT s1) = Q) AU, s1) = AU T s1).
Hence, A(j',’,s1) is an R-Hopf order in Képz.
A similar argument shows that A(/,;, 51) is an R-Hopf order in

KCp2. A discriminant argument then shows that
A(jlvi,asl):A(i7j>§l)*' O



3. The n = 3 case

Let g denote the image of g under the mapping KC,s — KCp2,

g”2 — 1; let &7 denote the image of v under the mapping
KCP3 — Ksz, ’7p2 — 1.

Let

P> _ 1 oPG(gP 1
A(i7.j7 u) = R g H ) g (g " U) bl
! e

and

7Tj ’ s k

A(j,k,w):R[

be Hopf orders in KC,. [Ch0O, §31].

g’ -1 gG(gP,w) — 1}



By [Un94, Theorem 1.3.1], i > j > k. Moreover, e’ > i,
ord(1 —u) > "+ (j/p) and ord(1 — w) > j’ + (k/p). We assume
that j/ > pi’, j+ " > ord(1 — @) and j' + k > ord(1 — w).

The linear duals of these Hopf orders are Hopf orders in K(f",,z of
the form

¥ —1 5GP, i) — 1
7-(_]./ b) ﬂ_,‘/ bJ

A(i j,u)" = A", i i) =R [

A, k,w) = AK',j/,w) =R

[UC06, Theorem 1.2].



Let

p—1p—1

Lpmin = % Z Z (pm+n)(pa+b) p(pa+b)
122
b= G
p n=0
1 p—1p—1
€pm+n = 5 G (pme-n)(partb) p(pa+b)7 and
p a=0 b=0
182
—an—
fq - *Zgl 7 gpn7
p n=0

mn=20,...,p—1,0< g < p—1, denote the minimal
idempotents for K(vP) = K(C2, K(7P) = K(,, K(gP) = KCp,
and K(gP) = KC,, respectively.



Let spmsn, m,n=0,...,p—1, be units of R with s,,, = "™, and
set

p—1 p—1
T= Z Zspm+nbpm+m T € K(HP);
m=0 n=0
p—1
—-1 _
d= Zsl Spq+1Pq,  d € K(7P).
q=0
Let Xpm4n, m,n=20,...,p— 1, be indeterminates with x,, = w™,
and set
p—1 p—1
X = Xpm+n€pmtn, X € K(gP).
m=0 n=0

We seek values for xpm4n, n > 0, so that

(67 =196 (7, ) = 1) (7 — 1)%, gx — 1>3 =0 (4

forq,r,s=0,...,p—1,r+s>0.



Proposition 3.1 The solution to (4) is
Xpm+n = C:J,_n51_n<7pmdin7 G(g”, w))1,

form,n=0,...,p—1. Thus

<(’7”2 —1)9(yPG(*", W) — 1) (7 — 1)°, gb — 1>3 =0 0

forq,r,s=0,...,p—1, r+s >0, when

b = C3—I151—I7<7Pmd7n7 G(§P7 W)>1epm+n-

Proof. See [Un08]. O.



In the special case that

-1

[ay

Rl
Rl

_ ~m _.n
T = 0"s" tpmin,

On

3
Il
Il
o

for s a unit of R, the solution to (4) is

Xpm+n = C??ns < pmG(7 U) " G(g W))
= G"s (GO, (A", G(g", w)h
= G"s"G(NT", w).

formn=0,...,p—1. Thus if

p—1 p—1
b = <3 nS_nG m~—n )epm—‘rna
m=0 n=0
then
2 2 . r
(07 ~DIP 60 w) ~1) (77— 1)°.gb—1) = 0.

forq,r,s=0,...,p—1,r+s>0.



Now let

H=A(i,j, u) [gb_ 1]

Tk

denote the R-module which is the A(/,j, u)-span of the set

gb—1 (gbh—1 2 gb—1 Pl
Lo () o (T .
Proposition 3.2. Suppose that j/ > pi’ and
v(¢2sP — G(uP,w)) > pi’ + k. Then H is a subcoalgebra of KCs.

Proof. See [Un08].



Let yYpmtn, m,n=20,...,p— 1 be indeterminates and set

p—1 p—1

y= Z ZYpm—I—anm-i-n, Ypm = am.

m=0 n=0
The ypm+n are the analogs in the dual situation for Xpmn.
Then, following the construction of b as in the previous text, we
find values for ypmyn, n > 0, for which

(v -1.(" - 1)(e"G(e” . v) - )"(eb~ 1)) =0, (7)

for,mt=0,....p—1, m+1t>0.



Ypm+n = C Zﬁb(n i

= C:?”ul "(8""c™", au),

for m,n=0,...,p—1, n> 0. The computation of ypmyn is
analogous to the computation of xpm4p.
Thus if

p—1 p—1
_p_ _ ~m
y=p8= § § Ypm+nlpm+n, Ypm = U,
m=0 n=0

then (7) is satisfied.



V8 —

Let J = A(K,j', W) [
A(K',j', W)-span of the set

L 1B-1 76—1>2 vB —1\P7
) 7Ti/ 7 7Ti/ AR ] ’n'i/ *

Proposition 3.3. Suppose H is an R-coalgebra as constructed by
Proposition 3.2. Suppose i > pj, k' > p?i’, j > p*k > pk, and

e > i+j+ k. Then the R-module J is an R-coalgebra.

Proof. See [Un08].

} denote the R-module which is the




Proposition 3.4. Suppose j' > pi’, i > pj, k' > p?/’,
j > pPk > pk, & > i+j+k, and v((asP — G(uP,w)) > pi’ + k.

-1
The coalgebras H = A(i, j, u) [gbk} and
T

1
J=AK.j, W) [75 . } are dual Hopf orders in KC.
m



Proof. (Analogous to the n = 2 case.) We first show that the

coalgebra J is a Hopf order. Since H* is an algebra with

A -1
H*NKCp = A(K',j, W), il -— € H” satisfies a monic
T

polynomial of degree p with coefficients in A(k’, ', w). Thus J is
an algebra as well as a coalgebra. The coinverse map of J can now
be defined as the composite ¢ of the iterated comultiplication and
multiplication maps J — ®p3_1 J — J. Hence, J is an R-Hopf
order in KCps.

Observe that J C H* implies H C J*. Since J* N KC2 = A(i, j, u),
gb—1
Tk
A(i,j,u). Thus H is a Hopf order. A well-known discriminant

argument then shows that H* = J.

satisfies a monic polynomial of degree p with coefficients in



Question: when is b trivial? That is, under what conditions do we
have

b—1enXA(i,j,u),

and hence

Ai,j, u) [gb - 1} = A(i,j, u) [g _kl]?

™



4. A Realizable Subclass
By [UCO05, Proposition 2.3],

v(G(wP,w)—1) = v(WwP-1)+v(w-1)-¢
> pi'+j+j +k/p—¢
= pi' +k/p,

and so, v((2sP — 1) > pi’ + k/p, hence, v((3s — 1) > i’ + k/p?.

Proposition 4.1. Suppose p | j, p? | k, v(1 — u) = i' +j/p,
v(l —w) ="+ k/p, and v((zs — 1) = i’ + k/p®. Then the Hopf

order H= A(i,j, u) [gb —

=——| € KCps is realizable in the sense
T

that there exists a Galois extension L/K with group Cps for which
Oy is an H-Galois algebra.

Proof. See [Un08, §3]. O



5. A Revision and a Suggestion

Under the conditions given in Section 3, there exists a Hopf order
in KCp3 of the form

2 2
.. gb—1 g —1 gPG(gP,u)—1 gh—1
A =R _ .
(i,j, u) { % ] [ > - R
with
p—1 p—1
b=> > (s "G(T", w)epmen-
m=0 n=0
We claim that

b= G(G(g", u)gP, w)G(g" (3 1s™h).



To this end we compute the image of
G(G(gpzau)gpvw) ( p C31 _1)

under the |somorph|sm KCp — > 0 _ Z 5 Kepmin,
gP — Z Z pm+nepm+n'



We obtain

‘?
[ay
~G|
[ary

G(G((CF™ P, u)CE™ " w)G((CE™ )P, (3 s ) epmrn

‘? 3
Ll
T 3
[
= O

G(G(¢T, u)(" ¢S w)G(T, G5t ) epmern

[
(]
(]

‘? 3
Ll
T 3
Il
= O

I
(]
(]

G(CfnUnCﬁ'7 W)Cg,_nsinepm—i-n

hi
= O

‘?3
Ll

G "sTG(T ", w)epman

Il Il
o 3
1]
3
<H3



Thus the Hopf order is

g” —1 gPG(g”,u)—1 gG(g”, (7 is )G (gPG(g”,u),w) — 1

! e wk



Inspired by G. G. Elder, this suggests an inductive definition of
Hopf orders in KCpn.

Forr,1<r<n,let
V, =g "GV, ur1)G(V2, ur2) - G(Vr—1, Up,r1).
Then

V;—1 v, —1

9

v,—1

7Ti"

R

g ..

mh 2

should be an R-Hopf order in KCpn.



When n=3, o1 =u, u31 = 43_15_1

i3 = k, we have

L U3 =W, L =1, b =],

Uy =gPG(Vi, 1) = ng(gpza u).

V3 = gG(V1,u31)G(V2, u32) = gG(g”, (51 s 1) G (gPG(g”, u), w).
And we recover the Hopf order

g” —1 gPG(gP',u)—1 gG(g”, (7 is )G (gPG(g”,u),w) —1

R
! g wk




6. A Comparison with Byott and Elder

Recently, N. P. Byott and G. G. Elder have constructed a class of
realizable Hopf orders in KC3 [BE18, §5.3].

These Hopf orders have the form
o3 —1 azag_m’ﬂ 1 Ulag—m,gl(02(7&—#2,3])[_“172] 1
7TM3 ’ 7TM2 ’ 7TM1

R

where Cg = (03, 02,01), and where My, Mo, M3 are integers, j1 2,
11,3, (42,3 are elements of K satisfying certain conditions, and

X1 — pi (;) (X —1)"

m=0

is the truncated exponential.



The parameters p, p satisfy the conditions

M- M M
v(p23) = 72 — Mz, v(ui3) = 721 — Mz, v(uip) = 71 — M,.

We compare the “Gauss sum” Hopf orders in KC,3 with these
“truncated exponential” Hopf orders in KC3:

o o) wk

R [g"2 —1 gPG(g",u) —1 gG(g” . ¢3's™1)G(ePG(g” ), w) — 1]
o

R

o3 — 1 02(7%—#2,3] _1 Ulag—mg](020‘&—#2,31)[7“172] 1
aMs 7 M2 ’ M



Clearly,

<= M3, j <= My, k<= My,

2
gf < 03, gP <= 02, g < 01.



But we also guess that
U< —H23,
—1_-1
C3 S — —H1,3,
W <— —l12,
G(oP [—H2,3]
(8”7, u) =03 "7,
G p2 —-1_-1 [_M1,3]
(g 7C3 S ) <~ 03 9

G(g”G(g", u), w) <= (o0} "23h)lmal

Here is some evidence to support these assertions.



Let C,> denote the cyclic group of order p? generated by g. Let
i > j be integers with ¢ >/ + /. Let v be a unit in R with
v(1 —vP) > pi’ +j. Then

A@L@:R[

is an R-Hopf order in KCpo.

gP—1 gG(gP,v)—1
7Ti ’ 7T-j

Let

1 2a—wm
N:Q—lz m

m=1



Proposition 6.1.([Un11], [EI11], [EI12]) The Gauss sum Hopf
order is a truncated exponential Hopf order, that is,

R gP—1 gG(gP,v)—1 e gP—1 g(gp)[—u]fl
a7 ) a7 7

Proof. We show that

G(gp7 V) _ (gp)[f,u] e H(I)

el




Note that

v(l—vP) = pr(l-v)
p(v(p) + €)
v(p(n) + pe’

So, the condition v(1 — vP) > pi’ 4 j implies that
V(1) = j — pi. (Here p(x) = xP — x.)



We should be able to convert the Gauss sum Hopf order in KCp3 to
a trunexp Hopf order in KCp3.

Recall that v({sP — G(uP,w)) > pi’ + k is a sufficient condition
for the existence of a Gauss sum Hopf order in KCs:

2 2 2 _ _ 2
p |87 —1 8°G(g”,u) —1 gG(g”, G 1s)G(gPG(gP , u), w) — 1
7Ti ’ ﬂ—J ’ 7rk

Let

m=1 m
. 1 p—1 (1 . C;ls—l)m
T -14~ m
H12 LS 1= w)"”
’ (1—1 m



Conjecture 6.2.

7! el ﬂ'k

R[gp2_1 g°G(g” u) — 1 gG(g”2,C315‘1)G(g"G(g”2,U),W)—1]

)

o lg” —1 gPleP) el 1
- . -

g(g?”)lmal(gr(gP" ) rasl)l-mal 1]
: .
T



Conjecture 6.3. /f v((osP — G(uP,w)) > pi’ + k, then
v(p(pa3) + m20(p23)) = k = pi.

We have

v(G(wP,w)—1) = v(1-uvP)+v(l—w)—¢€
= v(p(p2s)) +pe +v(maz)+e —¢
= v(u20(p23)) + pe,

and

v(Cs? — 1) = v(p(p13)) + pe'.

Thus v(p(p1,3) + 1120(12,3)) + pe’ > pi’ + k, which yields
v(p(p13) + p120(123)) = k — pi.



Note:
v(p(p13) + m12e(p23)) > k — pi

is a familiar condition that has occurred in the classification of
Hopf orders in (KC3)* (see [BE18], [Ko17]).
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